Grids computing offer a way to solve Grand Challenge problems such as protein folding, financial modeling, earthquake simulation, and climate/weather modeling. Grids offer a way of using the information technology resources optimally inside an organization. They also provide a means for offering information technology as a utility for commercial and noncommercial clients, with those clients paying only for what they use, as with electricity or water.
Grid computing is being applied by the National Science Foundation's National Technology Grid, NASA's Information Power Grid, Pratt & Whitney, Bristol-Myers Squibb Co., and American Express.citation needed
One cycle-scavenging networks is SETI@home, which was using more than 3 million computers to achieve 23.37 sustained teraflops (979 lifetime teraflops) as of September 2001.10
As of August 2009 Folding@home achieves more than 4 petaflops on over 350,000 machines.
The European Union funded projects through the framework programmes of the European Commission. BEinGRID (Business Experiments in Grid) was a research project funded by the European Commission11 as an Integrated Project under the Sixth Framework Programme (FP6) sponsorship program. Started on June 1, 2006, the project ran 42 months, until November 2009. The project was coordinated by Atos Origin. According to the project fact sheet, their mission is “to establish effective routes to foster the adoption of grid computing across the EU and to stimulate research into innovative business models using Grid technologies”. To extract best practice and common themes from the experimental implementations, two groups of consultants are analyzing a series of pilots, one technical, one business. The project is significant not only for its long duration, but also for its budget, which at 24.8 million Euros, is the largest of any FP6 integrated project. Of this, 15.7 million is provided by the European commission and the remainder by its 98 contributing partner companies. Since the end of the project, the results of BEinGRID have been taken up and carried forward by IT-Tude.com.
The Enabling Grids for E-sciencE project, based in the European Union and included sites in Asia and the United States, was a follow-up project to the European DataGrid (EDG) and evoled into the European Grid Infrastructure. This, along with the LHC Computing Grid12 (LCG), was developed to support experiments using the CERN Large Hadron Collider. The A list of active sites participating within LCG can be found online13 as can real time monitoring of the EGEE infrastructure.14 The relevant software and documentation is also publicly accessible.15 There is speculation that dedicated fiber optic links, such as those installed by CERN to address the LCG's data-intensive needs, may one day be available to home users thereby providing internet services at speeds up to 10,000 times faster than a traditional broadband connection.16
The distributed.net project was started in 1997. The NASA Advanced Supercomputing facility (NAS) ran genetic algorithms using the Condor cycle scavenger running on about 350 Sun Microsystems and SGI workstations.
In 2001, United Devices operated the United Devices Cancer Research Project based on its Grid MP product, which cycle-scavenges on volunteer PCs connected to the Internet. The project ran on about 3.1 million machines before its close in 2007.17
As of 2011, over 6.2 million machines running the open-source Berkeley Open Infrastructure for Network Computing (BOINC) platform are members of the World Community Grid, which tops the processing power of the current fastest supercomputer system (China's Tianhe-I).18
editDefinitions
Today there are many definitions of grid computing:
In his article “What is the Grid? A Three Point Checklist”,1 Ian Foster lists these primary attributes:
Computing resources are not administered centrally.
Open standards are used.
Nontrivial quality of service is achieved.
Plaszczak/Wellner19 define grid technology as "the technology that enables resource virtualization, on-demand provisioning, and service (resource) sharing between organizations."
IBM defines grid computing as “the ability, using a set of open standards and protocols, to gain access to applications and data, processing power, storage capacity and a vast array of other computing resources over the Internet. A grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of resources distributed across ‘multiple’ administrative domains based on their (resources) availability, capacity, performance, cost and users' quality-of-service requirements”.20
An earlier example of the notion of computing as utility was in 1965 by MIT's Fernando Corbató. Corbató and the other designers of the Multics operating system envisioned a computer facility operating “like a power company or water company”.21
Buyya/Venugopal22 define grid as "a type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous resources dynamically at runtime depending on their availability, capability, performance, cost, and users' quality-of-service requirements".
CERN, one of the largest users of grid technology, talk of The Grid: “a service for sharing computer power and data storage capacity over the Internet.”23
Grids can be categorized with a three stage model of departmental grids, enterprise grids and global grids. These correspond to a firm initially utilising resources within a single group i.e. an engineering department connecting desktop machines, clusters and equipment. This progresses to enterprise grids where nontechnical staff's computing resources can be used for cycle-stealing and storage. A global grid is a connection of enterprise and departmental grids that can be used in a commercial or collaborative manner.